Intro to Geometry 5 - Review

Check your answers against those on my website as you work! Don't wait until you're done.
Write the formula for the area of each shape:
Triangle

$$
A_{\Delta}=\frac{b \cdot h}{2} \quad \text { square }_{A_{\square}}=s^{2}
$$

Compute the area:

1. A triangle with base 18 cm and height 4 cm .

$$
\begin{aligned}
A_{\Delta} & =\frac{b \cdot h}{2}=36 \mathrm{~cm}^{2} \\
& =\frac{(18 \mathrm{~cm})(4 \mathrm{~cm})}{2}
\end{aligned}
$$

2. A square with side length 10 cm .

$$
\begin{aligned}
A_{0} & =s^{2} \quad=100 \mathrm{~cm}^{2} \\
& =(10 \mathrm{~cm})^{2}
\end{aligned}
$$

Solve for the missing value:

1) A triangle with area $60 \mathrm{~cm}^{2}$ and base 40 cm .
$\begin{aligned} & \text { Rectangle } \\ & A_{\square}=l \cdot n \\ &\end{aligned}$

$$
\begin{aligned}
& \text { Circle } \\
& A_{0}=\pi r^{2}
\end{aligned}
$$

3. A rectangle with side lengths 19 u and 12 u .

$$
\begin{aligned}
A_{\square} & =l-w=228 u^{2} \\
& =(19 u)(12 u)
\end{aligned}
$$

4. A circle with radius 2.5 m .

$$
\begin{aligned}
A_{0} & =\pi r^{2} \\
& =\pi(2.5 \mathrm{~m})^{2}
\end{aligned}
$$

3) A rectangle with area $14 \mathrm{~cm}^{2}$ and side 100 cm .

$$
\begin{aligned}
& A_{\square}=l \cdot w \\
& 14 \mathrm{~cm}^{2}=(1000 \mathrm{~m}) \cdot w \\
& \div 100 \mathrm{~cm} \quad \div 100 \mathrm{~cm}
\end{aligned}
$$

4) A circle with area $900 \mathrm{~cm}^{2}=r^{2}$
$A_{O}=\pi r^{2}$
$286.5 \mathrm{~cm}^{2}=r^{2}$
$0.14 \mathrm{~cm}=w$
$900 \mathrm{~cm}^{2}=\pi r^{2}$
$\div \pi \quad \therefore \pi$
Square root of 17
$16.9 \mathrm{~cm} \doteq r$

Estimate, then check: Square root of 994
Square root of 203
$3_{1}^{2}=961 \quad 3^{2}=1024 \quad \Rightarrow 31.5$
Solve: $2.5 \mathrm{~A}^{2}=250$

$4^{2}=16,5^{2}=25 \Rightarrow 4.1$
$15 B^{2}-15=225$
$15 \mathrm{~B}^{2}-15=225 \quad 2 \mathrm{C}^{3}+50=300$
$+15+15$
$150^{2}=240$
$\div 15 \quad \div 15$
$B^{2}=16$
$A=10$

$$
\begin{aligned}
14^{2} & =196,15^{2}=225 \Rightarrow 14.2 \\
2 C^{3}+50 & =300 \\
-50 & -50
\end{aligned}
$$

$$
2 c^{3}=250
$$

$$
\therefore 2 \quad \div 2
$$

$$
\frac{c^{3}}{\sqrt[3]{ }}=\frac{125}{\sqrt[3]{ }}
$$

$$
\leq=5
$$

What is the side length of a square with area $520 \mathrm{~cm}^{2}$? What if its area is $49 \mathrm{~m}^{2}$?

$$
\begin{gathered}
A_{D}=520 \mathrm{~cm}^{2}=s^{2} \\
\sqrt{ } \\
22.8 \mathrm{~cm}
\end{gathered} \quad\left\{\begin{array}{l}
A_{\square}=s^{2} \\
49 n^{2}=s^{2} \\
\sqrt{ } \sqrt{ }
\end{array} \quad 7 m=5\right.
$$

What is the side length of a cube with volume $201 \mathrm{~cm}^{3}$? What if its volume is $1425 \mathrm{~m}^{3}$?

$$
\begin{aligned}
& V_{b}=s^{3} \\
& 201 \mathrm{~cm}^{3}=s^{3} \\
& \sqrt[3]{ } \sqrt[3]{ }
\end{aligned} \quad \begin{aligned}
& 5.9 \mathrm{~cm} \doteq 5
\end{aligned} \quad\left\{\begin{array}{l}
V_{\mathrm{s}}=s^{3} \\
1425 \mathrm{~m}^{3}=5^{3} \\
\sqrt[3]{ } \sqrt[3]{ } \\
11.3 \mathrm{~m} \doteq 5
\end{array}\right.
$$

$$
\begin{aligned}
& A_{\Delta}=\frac{1}{2} 6 \mathrm{~h} \quad 60 \mathrm{~cm}^{2}=(20 \mathrm{~cm}) \mathrm{h} \\
& 60 \mathrm{~cm}^{2}=\frac{1}{2}(40 \mathrm{~cm}) \mathrm{h} \\
& \text { t20 ch } \pm 20 \mathrm{~cm} \\
& 3 \mathrm{~cm}=\mathrm{L}
\end{aligned}
$$

Compute the area:

1. A triangle with base 4 cm and height 14 cm .

$$
\begin{aligned}
A_{\Delta} & =\frac{1}{2} b \mathrm{~h} \\
& =\frac{1}{2}(4 \mathrm{~cm})(14 \mathrm{~cm})
\end{aligned}
$$

3. A rectangle with sides 19 mm and 21 mm .

$$
\begin{aligned}
A_{\square} & =l \cdot w \\
& =(19 \mathrm{~mm})(21 \mathrm{~mm}) \\
& =399 \mathrm{~mm}^{2}
\end{aligned}
$$

2. A square with side length 1.2 m .
$A_{\square}=s^{2}$
$=(1.2 n)^{2}$
3. A circle with a circumference of 75 cm .

$$
\begin{array}{ll}
A_{0}=\pi r^{2} & C=2 \pi n \\
& 75 \mathrm{~cm}=?
\end{array}
$$

$$
\begin{array}{ll}
=\pi r & 75 \mathrm{~cm}=2 \pi r \\
i \pi(11.9)^{2} & 72 \pi=2 \pi
\end{array}
$$

$$
=\pi\left(141,6 \mathrm{~cm}^{2}\right)
$$

$$
=444.8 \mathrm{~cm}^{2}
$$

$$
11.9 \mathrm{~cm} \div r
$$

Solve: $\mathrm{D}^{2}+25^{2}=40^{2}$

$$
\begin{gathered}
3 M^{2}-11^{3}=16^{2} \\
3 M^{2}-1331=256 \\
+1331+1331
\end{gathered}
$$

$$
3 M^{2}=1587
$$

$$
\therefore 3 \quad \div 3
$$

$$
D=31.2
$$

Estimate, then check: Cube root of 995

Cube root of 420

$$
\begin{gathered}
4 N^{3}-49=9^{3} \\
4 N^{3}-49=729 \\
+49+49 \\
4 N^{3}=778 \\
24=4 \\
N^{3}=194.5 \\
\sqrt[3]{ }=5.8
\end{gathered}
$$

Cube root of 813
$9^{3}=729,10^{3}=1000 \quad \sqrt[3]{995}=10$

$$
9^{3}=729,10^{3}=1000
$$

Determine the area:

$$
\begin{gathered}
7^{3}=343,8^{3}=512 \\
\sqrt[3]{420}=7.4,7.5
\end{gathered}
$$

$$
\sqrt[3]{813}=9.3
$$

40

