Surface Area 2 - Nets and Surface Area

Draw **proportional nets** for the following shapes. Appropriate measurements should be included for each side-length, with hash marks to indicate equal side-lengths. Then, compute the surface area of each shape to one decimal place.

(triangular prism)

![Diagram of a triangular prism](Image)

Use Pyth. Thm. to find hypotenuse!

\[3^2 + 4^2 = 5^2 \]

\[9 + 16 = 25 \]

\[5 \text{ cm} \]

SA:

\[2 \left(\frac{3 \text{ cm} \times 4 \text{ cm}}{2} \right) + (2 \text{ cm} \times 5 \text{ cm}) + (2 \text{ cm} \times 4 \text{ cm}) + (2 \text{ cm} \times 5 \text{ cm}) \]

\[= 12 + 10 + 16 \]

\[= 36 \text{ cm}^2 \]

OR View the 3 \(\square \) as one long one!

(rectangular prism) Label all sides properly!

![Diagram of a rectangular prism](Image)

SA:

\[2 \times \text{sum of areas of different rectangles} \]

\[= 2 \times (1.5 \text{ cm} \times 3 \text{ cm}) + 2 \times (3 \text{ cm} \times 4 \text{ cm}) + 2 \times (2 \text{ cm} \times 4 \text{ cm}) \]

\[= 9 \text{ cm}^2 + 12 \text{ cm}^2 + 16 \text{ cm}^2 \]

\[= 47 \text{ cm}^2 \]
(tetrahedron) (all faces congruent)

\[h^2 + 2.5^2 = 5^2 \]
\[h^2 + 6.25 = 25 \]
\[h^2 = 18.75 \]
\[h = 4.33 \text{ cm} \]

\[SA = U A_\Delta \]
\[= U \left(\frac{bh}{2} \right) \]
\[= U \left(\frac{5\text{ cm} \times 4.33\text{ cm}}{2} \right) \]
\[= 45.3 \text{ cm}^2 \]

(cube)

\[5A = 6 \text{ of the square!} \]
\[= 6 \times A_{\square} \]
\[= 6 \times s^2 \]
\[= 6 \times (3\text{ cm})^2 \]
\[= 54\text{ cm}^2 \]

\[3\text{ cm} \]

whoops!

whoopee! 105.8 \text{ cm}^2