Intro to Geometry 1 -Squares, Cubes, and Roots
Check your answers against those on my website as you work! Don't wait until you're done.

List the square and cube of each number:

$\#$	1	2	3	4	5	6	7	8	9	10	11	12
Square	1	4	9	16	25	36	49	64	81	100	121	144
Cube	1	8	27	64	125	216	343	512	729	1000	1331	1728

Use the above table to estimate the following values to one decimal place, then check:
Square root of $6 \quad 2.5$
Square root of $30 \quad 5.5$
Square root of $24 \quad 4.9$
Square root of $110 \quad 10.5$
Square root of $52 \quad 7.2$
Square root of 40 東 3
Square root of $34 \quad 5 . \ell$
Square root of $11 \quad 3.3$
Square root of $99 \quad 9.9$
Cube root of $9 \quad 2.1$
Cube root of $75 \quad 4.2$
Cube root of 100
4.7
Cube root of 23 要 2.8
Cube root of $45 \quad 3.6$
Cube root of $400 \quad 7.3$

Use square roots and cube roots to solve the following algebra problems:
$\sqrt{A^{2}}=16$
$\sqrt[3]{\mathrm{B}^{3}}=27$
$\mathrm{C}^{2}=31$
$\sqrt[3]{D^{3}}=\frac{49}{\sqrt[3]{3}}$
$A=4$
$B=3$
$C=5.57$
$D=3.66$

$$
\begin{array}{r}
\mathrm{E}^{2}+7=16 \\
-7=-7
\end{array}
$$

$$
F^{2}-4=21
$$

$$
\mathrm{G}^{3}-19=45
$$

$$
+4+4
$$

$$
+19+19
$$

$$
E^{2}=9
$$

$$
F^{2}=2.5
$$

$F=5$

$$
\begin{aligned}
& G^{3}=64 \\
& \sqrt[3]{3} \\
& G=4
\end{aligned}
$$

$$
\begin{array}{lll}
2 H^{2}=200 & 3 J^{2}-2=190 & 2 K^{3}+11=65 \\
\vdots 2=2 & 3 J^{2}=192 & -11-11 \\
H^{2}=100 & \div 3 & 2 K^{3}=54 \\
J & J & J^{2}=64 \\
H=10 & J & \vdots
\end{array}
$$

What is the area of a square with side length 18 cm ? What if its side length is 7 m ?
$A_{\square}=s^{2}$
$A_{D}=s^{2}$
$A_{a}=(18 \mathrm{~cm})^{2}$
$A_{a}=(7 m)^{2}$
$A_{a}=324 \mathrm{~cm}^{2}$
$A_{b}=49 m^{2}$

What is the side length of a square with area $200 \mathrm{~cm}^{2}$? What if its area is $15 \mathrm{~m}^{2}$?
$A_{\square}=s^{2}$
$A_{D}=s^{2}$
$200 \operatorname{con}^{2}=s^{2}$

$$
\frac{15 m^{2}}{\sqrt{v}}=s^{2}
$$

$14.14 \mathrm{~cm} \doteq 5$

$$
3.87 \mathrm{~m}=\mathrm{s}
$$

What is the volume of a cube with side length 10 cm ? What if its side length is 2 m ?
$V=s^{3}$
$V=5^{3}$
$V=(10 \mathrm{~cm})^{3}$
$V=1000 \mathrm{~cm}^{3}$

What is the side length of a cube with volume $45 \mathrm{~cm}^{3}$? What if its volume is $225 \mathrm{~m}^{3}$?

$$
\begin{array}{ll}
v=s^{3} & v=s^{3} \\
45 \mathrm{~cm}^{3}=s^{3} & 225 \mathrm{~m}^{3}=5^{3} \\
\sqrt[3]{\sqrt[3]{3}} & \sqrt[3]{ } \\
3.5 b_{c m}=s . & 6.08 \mathrm{~m}=5
\end{array}
$$

